Nonparametric Risk Management with Generalized Hyperbolic Distributions
نویسندگان
چکیده
In this paper we propose the GHADA risk management model that is based on the generalized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Compared to the normal distribution, the GH distribution possesses semi-heavy tails and represents the financial risk factors more appropriately. The nonparametric adaptive methodology has the desirable property of estimating homogeneous volatility in a short time interval. For DEM/USD exchange rate data and a German bank portfolio data the proposed GHADA model provides more accurate value at risk calculation than the traditional model based on the normal distribution. All calculations and simulations are done with XploRe.
منابع مشابه
Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملRisk Managementwith Generalized Hyperbolic Distributions
We examine certain Generalized Hyperbolic (GH) distributions for modeling equity returns, compared to usual Normal distributions. We describe these GH distributions and some of their properties, and test them against six years of daily S&P500 index prices. We estimate Value-at-Risk from calibrated distributions, and show that the Normal distribution leads to V aR estimates that significantly un...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملGeneralized Hyperbolic Distributions and Brazilian Data
The aim of this paper is to discuss the use of the Generalized Hyperbolic Distributions to fit Brazilian assets returns. Selected subclasses are compared regarding goodness of fit statistics and distances. Empirical results show that these distributions fit data well. Then we show how to use these distributions in value at risk estimation and derivative price computation.
متن کاملEstimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کامل